Home
Class 12
MATHS
Let alpha in (0, pi//2) be fixed. If the...

Let `alpha in (0, pi//2)` be fixed. If the integral `int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x)`
`"sin" 2 alpha +C`,where C is a constant of integration, then the functions A(x) and B(x) are respectively.

A

` x - alpha and log _e | sin (x - alpha )| `

B

` x + alpha and log _e | sin (x + alpha ) | `

C

` x - alpha and log _e | sin (x - alpha )| `

D

` x + alpha and log _ e | sin (x - alpha ) | `

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(tan x-tan alpha)/(tan x+tan alpha)dx

int{1+tan x*tan(x+alpha)}dx=

The value of the integral int_(0)^(3alpha) cosec (x-alpha)cosec(x-2alpha)dx is

(x tan alpha+y cot alpha)(x cot alpha+y tan alpha)-4xy cos^(2)2 alpha=

Integrate the functions (cos2x-cos2 alpha)/(cos x-cos alpha)

" If "20 alpha=pi" then tan "alpha" .tan2"alpha" .tan3"alpha" ....."tan9 alpha=

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to

If cos x -sin alpha cot beta sin x=cos alpha then the value of tan x/2 is