Home
Class 12
MATHS
If I=int(e^x)/(e^(4x)+e^(2e)+1) dx. J=in...

If `I=int(e^x)/(e^(4x)+e^(2e)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx.` Then for an arbitrary constant c, the value of `J-I` equal to

A

` (1 )/(2) log | (e^(4x ) - e ^(2x) + 1 )/ (e^(4x ) + e^(2x ) + 1 )| + c`

B

` (1)/(2) log | (e^(2x ) + e ^ x + 1 )/(e ^(2x) - e ^ x + 1 ) | + c `

C

` (1)/(2) log | ( e^(2x) - e ^ x + 1 )/( e ^(2x) + e ^ x + 1 )| + C `

D

` (1)/(2) log | (e ^(4x ) + e ^ (2x ) + 1 ) /(e^ (4x ) - e ^ (2x ) + 1 )| + c `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I =int(e^(x))/(e^(4x)+e^(2x)+1)dx , J = int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then for an arbitary constant C, the value of I - J equals

I=int(e^x)/(e^(x)-1)dx

int(e^(x)dx)/(e^(x)-1)

int(e^(-x))/(1+e^(x))dx=

I = int(dx)/(e^(x) + 4.e^(-x)) dx =

int(e^(x))/((1+e^(x))(2+e^(x)))dx

int(e^(4x)-1)/(e^(2x))dx

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int(dx)/(e^(x)+4e^(-x))=