Home
Class 12
MATHS
If f(x) is the integral of (2 sin x-sin ...

If f(x) is the integral of `(2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, "then find" underset(x rarr 0)("lim")f'(x)`.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is the integral of (2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, "then find" lim_(x rarr 0) f'(x) .

lim_(x rarr0)(2sin x-sin2x)/(x^(3))

f(x) is the integral of (2sin x-sin2x)/(x^(3)),x!=0. Find lim_(x rarr0)f'(x)[wheref'(x)=(df)/(dx)]

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr 0)("Lim")f(x)

Evaluate lim_(x rarr0)(2sin x-sin(2x))/(x^(3))

lim_(x rarr0)(sin x-x)/(x^(3))

lim_(x rarr0)(x-sin x)/(x^(3)) =

lim_(x rarr0)(2sin x^(0)-sin2x^(0))/(x^(3))