Home
Class 11
MATHS
The domain of f(x) =sqrt(log(1/|sin x|))...

The domain of `f(x) =sqrt(log(1/|sin x|))` is (i) `(-infty,infty)` (ii) `R-{(npi)/2: n in Z}` (iii) `R-{(npi): n in Z}` (iv) `R-{(npi)+(-1)^(n)(pi/2): n in Z}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(log(1/(|sinx|))) (a) R-{-pi,pi} (b) R-{npi|npiZ} (c) R-{2npi|n in z} (d) (-oo,oo)

The domain of the function f(x)=sqrt(log(1/(|sinx|))) (a) R-{-pi,pi} (b) R-{npi|npiZ} (c) R-{2npi|n in z} (d) (-oo,oo)

The domain of the function f(x)=sqrt(log(1/(|sinx|))) (a) R-{-pi,pi} (b) R-{npi|npiZ} (c) R-{2npi|n in z} (d) (-oo,oo)

The domain of the function f(x)=sqrt(log((1)/(|sin x|))(a)R-{-pi,pi}(b))R-{n pi|n pi Z}(c)R-{2n pi|n in z}(d)(-oo,oo)

The function f(x)=tanx is discontinuous on the set {npi; n in Z} (b) {2npin in Z} {(2n+1)pi/2: n in Z} (d) {(npi)/2: n in Z}

The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is (a) npi -1 " " (b) n pi (c) npi + 1 " " (d) 2n pi + 1

If the middle term in the expansion of (1/x+xsinx)^(10) is equal to 7 7/8 , then the value of x is (i) 2npi+(pi)/6 (ii) npi+(pi)/6 (iii) npi+(-1)^(n)(pi)/6 (iv) npi+(-1)^(n)(pi)/3

The solutions of the equation 1+(sinx-cosx)sinpi/4=2cos^2(5x)/2 is/are x=(npi)/3+pi/8, n in Z x=(npi)/2+(5pi)/(16), n in Z x=(npi)/3+pi/4, n in Z x=(npi)/2+(7pi)/8, n in Z

The solutions of the equation 1+(sinx-cosx)sinpi/4=2cos^2(5x)/2 is/are x=(npi)/3+pi/8, n in Z x=(npi)/2+(5pi)/(16), n in Z x=(npi)/3+pi/4, n in Z x=(npi)/2+(7pi)/8, n in Z

The solutions of the equation 1+(sinx-cosx)sinpi/4=2cos^2(5x)/2 is/are x=(npi)/3+pi/8, n in Z x=(npi)/2+(5pi)/(16), n in Z x=(npi)/3+pi/4, n in Z x=(npi)/2+(7pi)/8, n in Z