Home
Class 12
MATHS
If tan alpha, tanbeta are the roots of t...

If `tan alpha, tanbeta` are the roots of the equation `x^2+px+q=0(p!=0),` then (i) `sin(alpha+beta)=-p` (ii) `tan(alpha+beta)=p/(q-1)` (iii) `cos(alpha+beta)=(1-q)` (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha tan beta are the roots of the equation x^2 + px +q =0(p!=0) then

If tan alpha tan beta are the roots of the equation x^(2)+px+q=0(p!=0) then

If tan alpha, tan beta are the roots of the equation x^(2)+px+q=0,(p!=0), then (i) sin(alpha+beta)=-p( ii) tan(alpha+beta)=(p)/(q-1) (iii) cos(alpha+beta)=(1-q)( iv) none of these

If tan alpha , tan beta are the roots of the equation x^(2) + px+q=0(p ne 0) then

If alphaandbeta be the roots of the equation x^(2)-px+q=0 then, (alpha^(-1)+beta^(-1))=(p)/(q) .

If tan alpha, tan beta are the roots of the equation x^(2)+px+q=0 then sin^(2) (alpha+ beta)+ p sin(alpha+ beta) (cos+beta) +q cos^(2)(alpha+ beta)=

If tan alpha,tan beta are th roots of the eqution x^(2)+px+q=0(p!=0) Then sin^(2)(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+q cos^(2)(alpha+beta)=

If tan alpha ,tan beta are th roots of the eqution x^2+px+q=0 (p != 0) Then sin^2(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+qcos^2(alpha+beta)=