Home
Class 12
MATHS
If x and y be real, then the equation si...

If `x and y` be real, then the equation `sin^2 theta=(x^2+y^2)/(2xy)` has solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y be real, show that the equation : sin^2 theta= (x^2+y^2)/(2xy) is possible only when x =y ne 0 .

If x and y are real, show that the equation : sec^2 theta= (4xy)/(x+y)^2 is valid only when x = y ne 0 .

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

If x and y be real, show that the equation sec ^(2) theta=(4 xy)/((x+y)^(2)) is possible only when x=y

The equation sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

The equation Sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if