Home
Class 11
MATHS
prove that sin^(-1)(x)+cos^(-1)(x)=pi/2...

prove that `sin^(-1)(x)+cos^(-1)(x)=pi/2` ,`-1<=x<=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2), |x| le 1

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1)x+sin^(-1)sqrt(1-x^(2))=(pi)/(2)

prove that cos^-1(sinx)= pi/2-x

If sin ^ (- 1) x + sin ^ (- 1) y = (pi) / (2), then prove that sin ^ (- 1) x = cos ^ (- 1) y

If 0

Q.if solution of the equation 2sin^(-1)x cos^(-1)x-2 pi sin^(-1)x-pi cos^(-1)x+pi^(2)=0 are alpha and beta such that then which of the following is lare correct?

If |x|<=1 then prove that cos^(-1)(-x)=pi-cos^(-1)x