Home
Class 10
MATHS
If cosec A=(7)/(4), prove that 1+tan^(2)...

If `cosec A=(7)/(4)`, prove that `1+tan^(2)A=sec^(2)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If csc A+sec A=csc B+sec B, prove that: tan A tan B=cot(A+B)/(2)

If cosec A + sec A = cosec B + sec B , prove that tan A tan B = cot( A+ B)/ 2

Prove that (sin A +cosec A) ^(2) +(cos A +sec A) ^(2) =7+ tan ^(2) A +cot ^(2) A

Prove that (sin A +cosec A) ^(2) +(cos A +sec A) ^(2) =7+ tan ^(2) A +cot ^(2) A

Prove that (sin A +cosec A) ^(2) +(cos A +sec A) ^(2) =7+ tan ^(2) A +cot ^(2) A

Prove that (sin A +cosec A) ^(2) +(cos A +sec A) ^(2) =7+ tan ^(2) A +cot ^(2) A

Prove that (i) ("cosec"^(2) theta-1 ) tan^(2) theta =1 " " (ii) (sec^(2) theta -1)(1- "cosec"^(2) theta )=-1

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to