Home
Class 12
MATHS
If In=int0^(pi//2) x^n sinx \ dx, then {...

If `I_n=int_0^(pi//2) x^n sinx \ dx`, then `{I_4+12I_2}` is equal to (i) `3pi` (ii)`3(pi/2)^3` (iii)`(pi/2)^2` (iv)`4(pi/2)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

If I_(n) = int_0^(pi/2) sin^(n)x dx then I_(n)/(I_(n-2)) =

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

I_n=int_0^(pi//4) tan^n x dx, then lim_(ntooo) n [I_n + I_(n+2)] is equal to (i)1/2 (ii)1 (iii)infty (iv) 0

If I_n = int_0^(pi//4) tan^n x dx , then lim_(n to oo) n [I_n + I_(n -2)] equals :