Home
Class 12
MATHS
The value of lim(n to oo) ((sum n^2)(sum...

The value of `lim_(n to oo) ((sum n^2)(sum n^3))/(sum n^6)` is (i)`1` (ii)`3/2` (iii)`5/6` (iv)`7/12`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sum n^(2)*sum n^(3))/(sum n^(6)) is

lim_(n rarr oo) (1-n^(2))/(sum n)=

the value of lim_ (n rarr oo) (1-n ^ (2)) / (sum n ^ (2))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of sum_(n=1)^(oo)(4n-2)/(3^(n))