Home
Class 10
MATHS
Find the real value of 'x' satisfying th...

Find the real value of 'x' satisfying the equation `x ^(0.5 log_(sqrtx) (x^2-x) = 3 ^ (log_9 4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the real values (s) of x satisfying the equation log_(2x)(4x)+log_(4x)(16x)=4 .

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

Find the integral value of x satisfying the equation |log_(sqrt(3))x-2|-|log_(3)x-2|=2

Find the product of all real values of x satisfying the equation |3^(log_(3)^(2)x)-9|-2*x^(log_(3)x)=0

The value of x satisfying the equation 2^(log3x)+8=3*x^(log_(9)4), is

Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is

Value of x satisfying the equation log_(2)(9-2^(x))=x-3 is :

Find the values of x satisfying the inequalities: log_(2)(x^(2)-24)>log_(2)(5x)