Home
Class 9
MATHS
(b)arccos sqrt((2)/(3))-arccos(sqrt(6)+1...

(b)arccos sqrt((2)/(3))-arccos(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of arc cos sqrt((2)/(3))-arccos((sqrt(6)+1)/(2sqrt(3)))is

Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)

The value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A)(pi)/(3)(B)(pi)/(4)(C)(pi)/(2)(D)(pi)/(6)])

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

(3-sqrt(6))/(3+2sqrt(6))=a sqrt(6)-b

If f(x)=sqrt(1+cos^(2)(x^(2))), then f'((sqrt(pi))/(2)) is (sqrt(pi))/(6)(b)-sqrt(pi/6)1/sqrt(6)(d)pi/sqrt(6)