Home
Class 12
MATHS
" For integer "n>1," the digit at units ...

" For integer "n>1," the digit at units place in the number "sum_(r=0)^(20)r^(r+2)2^(n^(n))

Promotional Banner

Similar Questions

Explore conceptually related problems

For integer ngt1 , the digit at unit's place in the number sum_(r=0)^(100)r!+2^(2^(n)) is:

For integer n gt 1 , the digit at unit's place in the number sum_(r=0)^(100) r! + 2^(2^(n)) I

For integer n gt 1 , the digit at unit's place in the number sum_(r=0)^(100) r! + 2^(2^(n)) I

For integer n gt 1 , the digit at units place in the number sum_(r=0)^(100)r!+2^(2^n) is

For integer n>1, the di git at unit place in the number sum_(r=0)^(100)r!+2^(2n) is equal to

If n is a positive integer,sum_(r=0)^(n)(^(^^)nC_(r))^(2)=

If n is a positive integer,then sum_(r=1)^(n)r^(2)*C_(r)=

If n is a positive integer,then sum_(r=2)^(n)r(r-1)*C_(r) =

Lt_(n rarr oo)sum_(r=0)^(n-1)((r)/(n^(2) + r^(2)))

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))