Home
Class 11
MATHS
" 0."cos(2sin^(-1)x)=(1)/(3)...

" 0."cos(2sin^(-1)x)=(1)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(sin^(-1)""(2)/(3)+cos^(-1)x)=0 , then find the value of x.

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Solve: cos{2sin^(-1)(-x)}=0

Solve: cos{2sin^(-1)(-x)}=0

If 0

f_(1)(x)=sin^(-1)(cos(sin^(2)x)),f_(2)(x)=cos^(-1)(sin(cos^(2)x)),f_(3)(x)=sin^(-1)(cos^(2)x)),f_(4)(x)=cos^(-1)(sin^(2)x)* Then which of the following is/are correct?

(cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)