Home
Class 12
MATHS
[" (2.18) "If A=[[i,-i],[-i,i]],B=[[1,-1...

[" (2.18) "If A=[[i,-i],[-i,i]],B=[[1,-1]]" then "A^(8)=]

Promotional Banner

Similar Questions

Explore conceptually related problems

" If "A=[[i,-i],[-i,i]],B=[[1,-1],[-1,1]]" and if "A^8=alpha B,alpha in R" then the numerical value of "(alpha)/(32)" is "

If A=[[i,-i],[-i, i ]] and B=[[1,-1],[-1,1]] ,then A^( 8 ) equals,(where i=sqrt(-1) ) 4B 128 B -128 B -64 B

If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a. 4B b. 128 B c. -128 B d. -64 B

If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a. 4B b. 128 B c. -128 B d. -64 B

A=[(i,-i),(-i,i)],B=[(1,-1),(-1,1)]impliesA^(8)=

If A=([i,-i],[-i,i]) , B=([1,-1],[-1,1]) , A^(8)=KB and K=a^(b) then a+b=

if AB=[[i,-i],[-i,i]] and B=[[1,-1],[-1,1]] , then show that A^8=128B

If A={:[(i,-i),(-i,i)]:} and B={:[(1,-1),(-1,1)]:} then the value of A^(4)=KB, find the value of K.