Home
Class 13
MATHS
" (vii) "ax^(2)+2hxy+by^(2)+2gx+2fy+c=0...

" (vii) "ax^(2)+2hxy+by^(2)+2gx+2fy+c=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The condition that the equation ax^(2) + 2hxy + by^(2) + 2gx + 2fy +c=0 can take the form ax^(2) - 2hxy + by^(2)=0 , when shifting the origi is

The principal axes of the hyperbola ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0 are parallel to the lines

If ax^(2) +2hxy + by^(2) + 2gx + 2fy + c = 0, find dy/dx.

If the pair of lines ax^2 +2hxy+ by^2+ 2gx+ 2fy +c=0 intersect on the y-axis then

If the pair of lines ax^2 +2hxy+ by^2+ 2gx+ 2fy +c=0 intersect on the y-axis then

If the pair of lines ax^2 +2hxy+ by^2+ 2gx+ 2fy +c=0 intersect on the y-axis then

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

The transformed equation of ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c=0 when the axes are rotated through an angle 90^(@) is

Under the conditions ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0 will be the equation of a circle ? In that case what will be the coordinates of the centre ?