Home
Class 12
MATHS
f(x)={(pi/2+x) (xle(-pi)/4) ,(tanx (-p...

`f(x)={(pi/2+x) (xle(-pi)/4) ,(tanx (-pi/4< x < pi/4,), (pi/2-x, x >= pi/4)` then (A) f(x) has no point of local maxima

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2)) then a)f(x) has exactly one point of minima b)f(x) has exactly one point of maxima c)f(x) is increasing in (0, (pi)/(2)) . d)f(x) is decreasing in (0, (pi)/(2)) .

Let f(x)= (1-tanx)/(4x-pi) when 0 le x le (pi)/(2) and x ne (pi)/(4) , if f(x) is continuous at x=(pi)/(4) , then the value of f((pi)/(4)) is -

f(x) ={{:(,pi/2+x,x le (-pi)/(4)),(,tan x,(-pi)/(4) lt x lt pi/4),(,pi/2-x,x ge pi/4):} then:

Let f(x) = {((tan x - cot x)/(x-pi/4), ",", x != pi/4),(a, ",", x = pi/4):} The value of a so that f(x) is continuous at x = (pi)/4 , is

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

Let f(x) = {((tanx - cotx)/(x-pi/4), xne pi/4),(a, x = pi/4):} . The value of 'a' so that f(x) is continuous at x = pi/4 is

f(x)={tan^(-1)x,|x|<(pi)/(4) and (pi)/(2)-|x|,|x|<=(pi)/(4)

f(x)=(2-x)/(pi)cos pi(x+3)+(1)/(pi^(2))sin pi(x+3) where 0ltxlt4 .The number of points of local extrema are