Home
Class 12
MATHS
If f(x)=max{2sinx ,1-cosx}AAx in (0, 2pi...

If `f(x)=max{2sinx ,1-cosx}AAx in (0, 2pi),` then f'(x) is not defind at:

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the differentiability of f(x)=m a x{2sinx ,1-cosx}AAx in (0,pi)dot

Discuss the differentiability of f(x)=m a x{2sinx ,1-cosx}AAx in (0,pi)dot

Discuss the differentiability of f(x)=m a x{2sinx ,1-cosx}AAx in (0,pi)dot

Discuss the differentiability of f(x)=m a xi mu m{2sinx ,1-cosx}AAx in (0,pi)dot

Let f(x)=max{1+sinx,1,1-cosx}, x in [0,2pi], and g(x)=max{1,|x-1|}, x in R. Then

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=