Home
Class 12
MATHS
" 8."(x^(2)+y^(2))^(2)=xy" [C "...

" 8."(x^(2)+y^(2))^(2)=xy" [C "

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the foot of the perpendicular from the centre of the hyperbola xy=c^(2) on a variable tangent is (A) (x^(2)-y^(2))=4c^(2)xy(B)(x^(2)+y^(2))^(2)=2c^(2)xy(C)(x^(2)+y^(2))=4c^(2)xy(D)(x^(2)+y^(2))^(2)=4c^(2)xy

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

If f(2x^(2)+(y^(2))/(8),2x^(2)-(y^(2))/(8))=xy, then

Equation of the parabola whose focus is centre of the circle " x^(2)+y^(2)=4x+6y " and whose directrix is the line " x-y=0 " , is A) " x^(2)+y^(2)+2xy-8x-12y+26=0 " B ) " x^(2)+y^(2)-2xy-8x-12y-26=0 " C) " x^(2)+y^(2)+2xy+8x+12y+26=0 " D) " x^(2)+y^(2)-2xy-8x-12y+26=0 "

Equation of the parabola whose focus is centre of the circle " x^(2)+y^(2)=4x+6y " and whose directrix is the line " x-y=0 " is A) " x^(2)+y^(2)+2xy-8x-12y+26=0 B ) " x^(2)+y^(2)-2xy-8x-12y-26=0 C) " x^(2)+y^(2)+2xy+8x+12y+26=0 D) " x^(2)+y^(2)-2xy-8x-12y+26=0

Add: 8x^(2) - 5xy - 3y^(2), 2xy - 6y^(2) + 3x^(2) and y^(2) + xy - 6x^(2)

if (x^(2)+y^(2))/(x^(2)-y^(2))=(17)/(8) then find the value of x:y

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

Divide 14x^(3)y^(2) + 8x^(2)y^(3) - 22xy^(4) " by " -2xy^(2)