Home
Class 14
MATHS
((x+(1)/(y))^(a)*(x-(1)/(y))^(b))/((y+(1...

((x+(1)/(y))^(a)*(x-(1)/(y))^(b))/((y+(1)/(x))^(a)*(y-(1)/(x))^(b))

Promotional Banner

Similar Questions

Explore conceptually related problems

(((1)/(x)+y)^((a+b))((1)/(y)-x)^(-(p+q)))/(((1)/(x)-y)^(-(p+q))(x+(1)/(y))^((a+b)))=

Solve the followings : [(x + 1/y)^a (x - 1/y)^b] div [(y + 1/x)^a (y - 1/x)^b] is equal to :

Solve the following : [(x + 1/y)^a (x - 1/y)^b] div [(y + 1/x)^a (y - 1/x)^b] is equal to

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

Prove that the diagonals of the parallelogram formed by the four lines : (x)/(a)+(y)/(b)=1 , (x)/(a)+(y)/(b)=-1 , (x)/(a)-(y)/(b)=1 , (x)/(a)-(y)/(b)=-1 are at right angles.