Home
Class 12
MATHS
" The value of "int(e^(6bpx)-e^(5kyx))/(...

" The value of "int(e^(6bpx)-e^(5kyx))/(e^(4log x)-e^(3bex))dx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int(e^(6log x)-e^(5log x))/(e^(4log x)-e^(3log x))dx is equal

The value of f(e^(6ogx)-e^(5logx))/(e^(4logx) -e^(3logx))dx is equal to

int(e^(6log x)-e^(5log x))/(e^(5log x)-e^(3log x))dx

int e^(x log a) e^(x) dx is equal to

The value of int (e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x))dx is equal to

int e^(x log a ) e^(x) dx is equal to :

int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx is equal to