Home
Class 14
MATHS
If 1^2+2^2+3^2+...+x^2=(x(x+1)(2x+1))/6 ...

If `1^2+2^2+3^2+...+x^2=(x(x+1)(2x+1))/6` then `1^2+3^2+5^2+...+19^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF 2x ^(1//3)+2x ^(-1//3) =5 then x=

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

Without expanding, find the value of: (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

If x=2+2^(2/3)+2^(1/3) , then the value of x^3-6x^2+6x is:

Solve : (2x^2 - 3x+1) (2x^2 + 5x + 1) = 9x^2 .

If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is

If (2x + y + 2)/(5) = ( 3x - y + 1)/( 3 ) = ( 2 x + 2y + 1 )/(6) then

Observe the following pattern 1^(2)=(1)/(6)[1x(1+1)x(2x1+1)]1^(2)+2^(2)=(1)/(6)[2x(2+1)x(2x2+1)]1^(2)+2^(2)+3^(2)=(1)/(6)[3x(3+1)x(2x3+1)]1^(2)+2^(2)+3^(2)+4^(2)=(1)/(6)[4x(4+1)x(2x4+1)] and find the values of each of the following 1^(2)+2^(2)+3^(2)+4^(2)++10^(2)5^(2)+6^(2)+7^(2)+8^(2)+9^(2)+10^(2)+11^(2)+12^(2)