Home
Class 10
MATHS
(x+y)^(2)=x^(2)+2xy+y^(2)...

(x+y)^(2)=x^(2)+2xy+y^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_((x-y))(x+y)=5 , then what is the value of log_(x^(2)-y^(2))(x^(2)-2xy + y^(2))?

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

If log_((x+y))(x - y) = 7 , then the value of log_((x^(2)-y^(2)))(x^(2)+2xy+y^(2)) is ______.

Find the continued product of x+y,x-y,x^(2)+xy+y^(2),x^(2)-xy+y^(2)

If x=2+3i and y=2-3i then find the values of : (x^(2)+xy+y^(2))/(x^(2)-xy+y^(2))

What is ((x^(2)+y^(2))(x-y)-(x-y)^(3))/(x^(2)y-xy^(2)) equal to ?

x-x^(2)y+xy^(2)-y

The product of the rational expressions (x^2 - y^2)/(x^2 + 2xy + y^2) and (xy + y^2)/(x^2 - xy) is: