Home
Class 12
MATHS
Area of a rectangle having vertices A, ...

Area of a rectangle having vertices A, B, C and D with position vectors `- hat i+1/2 hat j+4 hat k , hat i+1/2 hat j+4 hat k , hat i-1/2 hat j+4 hat k` and `- hat i-1/2 hat j+4 hat k` respectively is
(A) 1/2 (B) 1 (C) 2 (D) 4

Text Solution

AI Generated Solution

To find the area of the rectangle with given vertices A, B, C, and D, we will follow these steps: ### Step 1: Identify the position vectors The position vectors of the vertices are given as follows: - A: \(-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}\) - B: \(\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}\) - C: \(\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}\) - D: \(-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT|Exercise Exercise 10.5|7 Videos
  • VECTOR ALGEBRA

    NCERT|Exercise SOLVED EXAMPLES|36 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise QUESTION|1 Videos

Similar Questions

Explore conceptually related problems

What is the area of the rectangle having vertices A, B, C and D with positive vectors -hat(i)+(1)/(2) hat(j)+4hat(k), hat(i)+(1)/(2)hat(j)+4hat(k), hat(i)-(1)/(2) hat(j)+4hat(k) and -hat(1)-(1)/(2) hat(j)+4hat(k) ?

Show that the four points A,B,C and D with position vectors 4hat i+5hat j+hat k,-(hat j+hat k),3hat j+9hat j+4hat k and 4(-hat i+hat j+hat k) respectively are coplanar.

Area of a rectangle having vertices : A (-hat(i)+(1)/(2)hat(j)+4hat(k)), " " B(hat(i)+(1)/(2)hat(j)+4hat(k)) , C(hat(i)-(1)/(2)hat(j)+4hat(k)), " " D(-hat(i)-(1)/(2)hat(j)+4hat(k)) is :

Show that the four points A, B, C and D with position vectors 4hat(i)+5hat(j)+hat(k), -(hat(j)+hat(k)),3hat(i)+9hat(j)+4hat(k) and 4(-hat(i)+hat(j)+hat(k)) respectively are coplanar.

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively from the vertices of a right angled triangle.

If vec a=3hat i-hat j-4hat k,vec b=2hat i+4hat j-3hat k and vec c=hat i+2hat j-widehat k, find |3vec a-2hat b+4hat c|

underset with a = 2hat i + hat j-3hat k, vec b = -hat i + hat j + 2hat k, vec c = 4hat i + 3hat k

If the four points with positing vectors,-2hat i+hat j+hat k,hat i+hat j+hat k,hat j-hat k and lambdahat j+hat k are coplanar,then lambda is equal to

If the vectors 4 hat i+11 hat j+m hat k ,\ 7 hat i+2 hat j+6 hat k\ a n d\ hat i+5 hat j+4 hat k are coplanar then m= 38 b. "\ "10"\ " c. -1 d. -10