Home
Class 12
MATHS
The value of lim(x->pi/4)(1+[x])^(1//ln...

The value of `lim_(x->pi/4)(1+[x])^(1//ln(tanx))` (where[.] denote the greatest integer function) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

lim_(xrarr pi//2)([x/2])/(log_e(sinx)) (where [.] denotes the greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is