Home
Class 7
MATHS
" (2) "(1)/(7+3sqrt(2))...

" (2) "(1)/(7+3sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalise the demonator of (1)/( 7+ 3sqrt(2))

Rationalise the denominator of (1)/(7+3sqrt(2))

Rationalise the denominator of (1)/(7+3sqrt(2))

Rationalise the denominator of (1)/(7+3sqrt(2))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

tan^(2)((1)/(2)sin^(-1)(2)/(3))= (A) (7+3sqrt(3))/(2) (B) (7-5sqrt(3))/(2) (C) (7-3sqrt(5))/(2) (D) (7+5sqrt(3))/(2)

Simplify: (7+3sqrt(5))/(3+sqrt(5))-(7-3sqrt(5))/(3-sqrt(5)) (ii) (1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))

Rationalize the denominator of each of the following expressions : (1)/( 7+3sqrt2)