Home
Class 14
MATHS
If log(1-(1-(1-x^2)^(-1))^(-1))^(-1/2)=k...

If `log(1-(1-(1-x^2)^(-1))^(-1))^(-1/2)=klog|x|` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that log x=log[1-{1-(1-x^(2))^(-1)}^(-1)]^(-(1)/(2))

log_(2)(x^(2)-1)=log_((1)/(2))(x-1)

If int sqrt((x-2)(6-x))dx=(xsin^(-1)x)/(sqrt(1-x^(2)))+(1)/(k)log|1-x^(2)|+c , then the value of k is-

The value of int_(-2)^(2)[p log((1+x)/(1-x))+q log ((1-x)/(1+x))^(-2)+r]dx depends on -

int 2/(1-x^(4)) dx = k log ((1+x)/(1-x)) + tan^(-1)x then k =

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to