Home
Class 13
MATHS
cos2x=cos^(2)x=sin^(2)x...

cos2x=cos^(2)x=sin^(2)x

Promotional Banner

Similar Questions

Explore conceptually related problems

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

If f(x)=det[[sin^(2)x,cos^(2)x,1cos^(2)x,sin^(2)x,1x-12,12,2]] then f'((pi)/(2))=

Solve: 2+2 cos2x cos5x = sin^(2)2x

Show that cos 2 x=cos ^(2) x-sin ^(2) x=2 cos ^(2) x-1=1-2 sin ^(2) x=(1-tan ^(2) x)/(1+tan ^(2) x)