Home
Class 12
MATHS
(ii)tan^(-1)((x)/(sqrt(a^(2)-x^(2))))...

(ii)tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Write tan^(-1)((x)/(sqrt(a^(2)-x^(2)))) in simplest form.

Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1)((sqrt(a^(2)-x^(2)))/(a)) .

The simplest form of tan^(-1)((x)/(a+sqrt(a^(2)-x^(2)))) is :

Find tan^(-1)(x)/(sqrt(a^(2)-x^(2))) in terms of sin^(-1) where x in(0,a).

tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lt a

tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lt a

(d)/(dx)[tan^(-1)((x-sqrt(a^(2)-x^(2)))/(x+sqrt(a^(2)-x^(2))))]=

Find tan^(-1). (x)/(sqrt(a^(2) - x^(2))) in terms of sin^(-1) , where x in (0, a)

Find tan^(-1). (x)/(sqrt(a^(2) - x^(2))) in terms of sin^(-1) , where x in (0, a)