Home
Class 12
MATHS
" Let "f(x)" be a function such that "f(...

" Let "f(x)" be a function such that "f(x-1)+f(x-1)=sqrt(3)*f(x)=x in R*|f(5)=10" Then the value of "sum_(r=1)^(99)f(5+12r)" is."

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a function such that f(x-1)+f(x+1)=sqrt(3)f(x) and f(5)=10 then the sum of digit of the value of sum_(r=0)^(19)f(15+12r) is

If f(x) is a function such that f(x-1)+f(x+1)=sqrt3t(x) and f(5)=100 , then find sum_(t=0)^(19)f(5+12r) .

If f(x) is a function such that f(x-1)+f(x+1)=sqrt3t(x) and f(5)=100 , then find sum_(t=0)^(19)f(5+12r) .

Let f(x) be a function such that :f(x-1)+f(x+1)=sqrt(3)f(x), for all x varepsilon R. If f(5)=100, then prove that the value of sum_(r=o)^(99)f(5+12r) will be equal to 10000.

" Let "f(x)" be a function which satisfies the relation "f(x+1)+f(2x+2)+f(1-x)+f(2+x)=x+1AA x in R" then value of "[f(0)|" is "

Let f(x) be a function such that : f(x - 1) + f(x + 1) = sqrt3 f(x), for all x epsilon R. If f(5) = 100, then prove that the value of sum_(r=o)^99 f(5 + 12r) will be equal to 10000.

Let f(x) be a function such that : f(x - 1) + f(x + 1) = sqrt3 f(x), for all x epsilon R. If f(5) = 100, then prove that the value of sum_(r=o)^99 f(5 + 12r) will be equal to 10000.

Let f(x) be a function such that : f(x - 1) + f(x + 1) = sqrt3 f(x), for all x epsilon R. If f(5) = 100, then prove that the value of sum_(r=o)^99 f(5 + 12r) will be equal to 10000.

If f(x) is real valued function such that (f(x-1)+f(x+1))/(2f(x))=sin60^(@),AA x in R then find the value of f(x-1)+f(x+5)

If f:R rarr R-{3} be a function such that f(x+1)=(f(x)-5)/(f(x)-3)AA x in R, then