Home
Class 12
MATHS
f(x)={[(1+2x)^(2/x),," for "x!=0],[e^(2)...

f(x)={[(1+2x)^(2/x),," for "x!=0],[e^(2),," for "x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={((1+2x)^(1//x)",","for " x ne 0),(e^(2)",", "for " x =0):} , then

If f(x) is continuous at x=0 , where f(x)={:{(((e^(x)-1)^(4))/(sin(x^(2)/k^(2))log(1+ x^(2)/(2)))", for " x!=0),(8", for " x=0):} , then k=

f(x) {:((e^(5x)-e^(3x))/(sin2x)", if "x!=0),(=1", if "x=0):}} at x = 0 is ,

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

If f(x)={((sin3x)/(e^(2x)-1),,,x!=0),(k-2,:,x=0):} is Continuous at x=0, then k=

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

The function f(x) =(e^(1//x^(2))/(e^(1//x^(2))-1)" for "x ne 0,f(0)=1" at x =0 is"