Home
Class 12
MATHS
F(x)=int(-1)^x (t^2-t)dt, x in R...

`F(x)=int_(-1)^x (t^2-t)dt, x in R`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(e^(t))/(t)dt,x in R^(+). Then complete set of valuesof x for which f(x)<=In x is

Let f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle4 . Then the range of f (x) is

If f(x) =int_(0)^(x) {f(t)}^(-1)dt, " and " int_(0)^(1) {f(t}^(-1)dt=sqrt(2) , then f(x)=

The interval in which f(x) defined by f(x) = int_(-1)^x (t^2+2t)(t^2-1) dt increases

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

The interval in which the function f(x)=int_(0)^(x) ((t)/(t+2)-1/t)dt will be non- increasing is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then