Home
Class 11
MATHS
If 2tanbeta+cotbeta=tanalpha , prove tha...

If `2tanbeta+cotbeta=tanalpha` , prove that `cotbeta=2tan(alpha-beta)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

if tanalpha -tanbeta =x and cotbeta-cotalpha =y prove that cot(alpha-beta) = (x+y)/(xy)

Prove that 2tanbeta+cotbeta=tanalphaimplies2tan(alpha-beta)=cotbeta .

If 2tanalpha=3tanbeta , then prove that then show that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

if tanbeta=(nsinalphacosbeta)/(1-nsin^2alpha) then prove that tan(alpha-beta)=(1-n)tanalpha.

If tanbeta=(nsinalphacosalpha)/(1-nsin^2alpha) ,show that tan(alpha-beta)=(1-n)tanalpha

If tanbeta = costheta*tanalpha , then tan^2(theta/2) is equal to

If tanbeta = costheta*tanalpha , then tan^2(theta/2) is equal to

If tanbeta=(Q"sin"alpha)/(P+Qcosalpha) Prove that "tan"(alpha-beta)=(P"sin"alpha)/(Q+Pcosalpha)

If tan(alpha-beta)=(sin2beta,)/(3-cos2beta) then (a) tanalpha=2tanbeta (b) tanbeta=2tanalpha (c) 2tanalpha=3tanbeta (d) 3tanalpha=2tanbeta

If tan(alpha-beta)=(sin2beta,)/(3-cos2beta) then (a) tanalpha=2tanbeta (b) tanbeta=2tanalpha (c) 2tanalpha=3tanbeta (d) 3tanalpha=2tanbeta