Home
Class 12
MATHS
suppose x1, and x2 are the point of maxi...

suppose `x_1,` and `x_2` are the point of maximum and the point of minimum respectively of the function `f(x)=2x^3-9ax^2 + 12a^2x + 1` respectively, `(a> o)` then for the equality `x_1^2 = x_2` to be true the value of `'a'` must be

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x)=2|x-1|+|x-2| is

Let x_(1) and x_(2) are the points of maximum and minimum of function f(x)=2x^(3)-9ax^(2)+12a^(2)x+1 respectively, (a>0).If x_(1)^(3)=8x_(2) then the sum of all possible values of 'a' is

The minimum value of the function f(x)=2|x-1|+|x-2| is -

Let x_(1) and x_(2) are the points of maximum and minimum of function f(x)=2x^(3)-9ax^(2)+12a^(2)x+1 respectively. If x_(1)^(3)=8x_(2) then the sum of all possible values of a is

Let x_(1) and x_(2) are the points of maximum and minimum of function f(x)=2x^(3)-9ax^(2)+12a^(2)x+1 respectively, .If x_(1)^(3)=8x_(2) then the sum of all possible values of 'a' is

The minimum value of the function f(x) = 2|x - 1| + |x - 2| is

Find the absolute maximum and absolute minimum values of the function f(x)=2x^(3)+3x^(2)-12x on [-3, 2]

Find the minimum or maximum value of the function if f(x) = 9x^2+12x+2

Find the minimum or maximum value of the function if f(x) = 9x^2+12x+2