Home
Class 12
MATHS
Two circles, each having radius 4, have ...

Two circles, each having radius 4, have a common tangent given by `3x+2y-6=0` at `(2, 0)`. Then their centres are : (A) `(2+ 5/sqrt(13), 8/sqrt(13)), (2- 5/sqrt(13)``, (-8)/sqrt(13))` (B) `(2+ 12/sqrt(13), 8/sqrt(13))`, `(2- 12/sqrt(13), (-8)/sqrt(13))` (C) `(2, 3), (4, 5)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

sin[(1)/(2)cot^(-1)((2)/(3))]= sqrt((sqrt(13)-2)/(2sqrt(13))) (2+sqrt(13))/(2sqrt(13)) sqrt((2-sqrt(13))/(2sqrt(13))) (2-sqrt(13))/(2sqrt(13))

sqrt(13^(2))-sqrt(36) times sqrt(4)=

Simplify (sqrt(13)-sqrt(11))/(sqrt(13)+sqrt(11)) + (sqrt(13)+sqrt(11))/(sqrt(13)-sqrt(11))

Comparison of ratios (sqrt(13))/(sqrt(8)),(sqrt(17))/(sqrt(15))

(13+2sqrt(5))^(2)=?sqrt(5)+189

Show that 1/(sqrt11+3) , 1/(sqrt13+3) , 1/(sqrt11+sqrt13) are in A.P.

Simplify: 13sqrt(8)+1/2sqrt(8)-5sqrt(8)

The value of 3+(1)/(3+(1)/(3+(1)/(3+...*oo))) (1) (3+sqrt(5))/(2) (2) (3-sqrt(13))/(2) (3) (3+sqrt(13))/(2) (4) None of these