Home
Class 11
MATHS
If alpha=e^((i2pi)/n), then n(11-alpha)...

If `alpha=e^((i2pi)/n)`, then `n(11-alpha)(11-alpha^2)(11-alpha^(n-1))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha=e^((i8 pi)/(11)), then find Re(alpha+alpha^(2)+alpha^(3)+alpha^(4)+alpha^(5))

If 1,alpha,alpha^2,alpha^3,......,alpha^(n-1) are n n^(th) roots of unity, then find the value of (2011-alpha)(2011-alpha^2)....(2011-alpha^(n-1))

If 1,alpha_1,alpha_2,…..alpha_(n-1) are the n^(th) roots of unity then (1-alpha_1)(1-alpha_2)…..(1-alpha_(n-1))=

If 1, alpha,alpha^2.......alpha^(n-1) are the nth roots of unity then prove that (1-alpha)(1-alpha^2).....(1-alpha^(n-1))=n

If 1,alpha_(1),alpha_(2),...,alpha_(n-1) are n^( th) roots of unity then (1)/(1-alpha_(1))+(1)/(1-alpha_(2))+....+(1)/(1-alpha_(n-1))=

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha_(1),alpha_(2)......alpha_(n-1) are n^(th) roots of unity then (1)/(1-alpha_(1))+(1)/(1-alpha_(2))+......+(1)/(1-alpha_(n-1))=