Home
Class 12
MATHS
2tan^(-1)x=tan^(-1)(2x)/(1+x^(2))...

2tan^(-1)x=tan^(-1)(2x)/(1+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the set of values of x for which 2 tan^(-1)x="tan"^(-1)(2x)/(1-x^(2)) holds.

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Simplify 2"tan"^(-1)x+"sin"^(-1)((2x)/(1+x^(2))) in terms of "tan"^(-1)x .