Home
Class 11
PHYSICS
Let a force F be acting on a body free t...

Let a force F be acting on a body free to rotate about a point O and let r the position vector of ant point P on the line of aciton of the force. Then torque `(tau)` of this force abot point O is defined as ` tau = rxxF` Given, `F = (2hati + 3hatj - hatk)N and r = (hati- hatj+6hatk)m` Find the torque of this force.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a force F be acting on a body free to rotate about a point O and let r the position vector of any point P on the line of action of the force. Then torque (tau) of this force about point O is defined as tau = rxxF Given, F = (2hati + 3hatj - hatk)N and r = (hati- hatj+6hatk)m Find the torque of this force.

Let a force vecF be acting on a body free to rotate about a point O and let vecr the position vector of any point P on the line of action of the force then torque ( tau ) of this force about point O is defined as vectau = vecr xx vecF given vecF = ( 2 hati + 3hatj - hatk ) N and vecr =( hati - hatj + 6 hatk ) m. find the torque of this force

Find the torque of a force F=a(hati+2hatj+3hatk) N about a point O. The position vector of point of application of force about O is r=(2hati+3hatj-hatk) m .

Find the torque of a force F=a(hati+2hatj+3hatk) N about a point O. The position vector of point of application of force about O is r=(2hati+3hatj-hatk) m .

What is the torque of force vec F = (2hati -2hatj - 4hatk) N acting at a point vec r = (3hati + 2hatj) m about the origin?

A force vec(F)=4hati-10 hatj acts on a body at a point having position vector -5hati-3hatj relative to origin of co-ordinates on the axis of rotation. The torque acting on the body is

A force vec(F)=4hati-10 hatj acts on a body at a point having position vector -5hati-3hatj relative to origin of co-ordinates on the axis of rotation. The torque acting on the body is