Home
Class 10
MATHS
" (a) "sin^(2)alpha+sin^(2)beta=1...

" (a) "sin^(2)alpha+sin^(2)beta=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that if two angles alphaandbeta are complementary angles, then sin^(2)alpha+sin^(2)beta=1

(A) sin^(2)5+sin^(2)10+......+sin^(2)85=(17)/(2) (R) : If alpha+ beta=90^(@) then sin^(2)alpha+ sin ^(2) beta=1

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1, then provet that (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=1.

If (cos^(4)alpha)/(cos^(2) beta) + (sin^(4)alpha)/(sin^(2)beta) = 1, prove that sin^(4)alpha + sin^(4) beta = 2 sin^(2) alpha sin^(2) beta

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=?

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then the value of (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha) is

If 2tan^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1 prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1

If alpha , beta are complementary angles , then sin^(2) alpha + sin^(2) beta =

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta