Home
Class 11
MATHS
If S={x in R :((log)(0. 6)0. 216)(log)5...

If `S={x in R :((log)_(0. 6)0. 216)(log)_5(5-2x)lt=0},` then `S` is equal to `(2. 5 ,oo)` (b) `[2, 2.5)` (c) `(2, 2.5)` (d) `(0, 2.5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If S={x in R:((log)_(0.6)0.216)(log)_(5)(5-2x)<=0} then S is equal to (2.5,oo)(b)[2,2.5)(c)(2,2.5) (d) (0,2.5)

x^((log)_5x)>5 implies x in (0,oo) (b) [2,2.5] (c) (2,2.5) (d) (0,2.5)

(log)_(0. 5)(3-x)/(x+2)<0

(log)_(0. 5)(3-x)/(x+2)<0

x^((log)_5x)>5 implies x in (0,oo) (b) (0,1/5)U(5,∞) (c) (2,2.5) (d) (0,2.5)

If a gt 1, x gt 0 and 2^(log_(a)(2x))=5^(log_(a)(5x)) , then x is equal to

If a gt 1, x gt 0 and 2^(log_(a)(2x))=5^(log_(a)(5x)) , then x is equal to

If a gt 1, x gt 0 and 2^(log_(a)(2x))=5^(log_(a)(5x)) , then x is equal to

solve ||x-2|-1|lt 2 "(a) (2,5) (b)(-1, 5) (c) (-2,-1) (d) (0,5)"

lim_(x rarr 0) (ln(2+x)+ln0.5)/x is equal to