Home
Class 11
MATHS
If a1,a2, a3, a4 be the coefficient of f...

If `a_1,a_2, a_3, a_4` be the coefficient of four consecutive terms in the expansion of `(1+x)^n ,` then prove that: `(a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the coefficients of four consecutive terms in the expansion of (1+x)^n are a_1,a_2,a_3 and a_4 respectively. then prove that a_1/(a_1+a_2)+a_3/(a_3+a_4)=2a_2/(a_2+a_3).

If a_1,a_2,a_3 and a_4 be any four consecutive coefficients in the expansion of (1+x)^n , prove that a_1/(a_1+a_2)+a_3/(a_3+a_4)= (2a_2)/(a_2+a_3)

If the coefficient of-four successive termsin the expansion of (1+x)^n be a_1 , a_2 , a_3 and a_4 respectivel. Show that a_1/(a_1+a_2)+a_3/(a_3+a_4)=2 a_2/(a_2+a_3)

If a_1,a_2,a_3,a_4 are the coefficients of 2nd, 3rd, 4th and 5th terms of (1+x)^n respectively then (a_1)/(a_1+a_2) , (a_2)/(a_2+a_3),(a_3)/(a_3+a_4) are in

If a_1,a_2, a_3,a_4 are the coefficients of 2nd, 3rd, 4th and 5th terms of respectively in (1+x)^n then (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=

If a_1, a_2, ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)++(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_0,a_1,a_2,……a_n be the successive coefficients in the expnsion of (1+x)^n show that (a_0-a_2+a_4……..)^2+(a_1-a_3+a_5………)^2=a_0+a_1+a_2+………..+a_n=2^n

If a_0,a_1,a_2,……a_n be the successive coefficients in the expnsion of (1+x)^n show that (a_0-a_2+a_4……..)^2+(a_1-a_3+a_5………)^2=a_0+a_1+a_2+………..+a_n=2^n

If a_i>0, i=1, 2, 3,..., n then prove that a_1/a_2+a_2/a_3+a_3/a_4+...+a_(n-1)/a_n+a_n/a_1gen .

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n