Home
Class 12
MATHS
cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=ta...

cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a*" find "(dy)/(dx)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove that (dy)/(dx)=(y)/(x)

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove that (dy)/(dx)=(y)/(x)

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a , prove than (dy)/(dx)=(y)/(x).

if cos^(-1){(x^(2)-y^(2))/(x^(2)+y^(2))}=log a then find (dy)/(dx)

y=(x^(2)+1)tan^(-l)x find (dy)/(dx)

cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=log a find (dy)/(dx)

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a then prove that (dy)/(dx)=(y)/(x)

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot