Home
Class 13
MATHS
a(b-c)^(3)=d(a-b)^(3)...

a(b-c)^(3)=d(a-b)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc

If (2a+3b)(2c-3d)=(2a-3b)(2c+3d) then (a)/(b)=(c)/(d)( b) (a)/(d)=(c)/(b)( c) (a)/(b)=(d)/(c)(d)(b)/(a)=(c)/(d)

If a^((1)/(3))+b^((1)/(3))+c^((1)/(3))=0, then+ ?(a)a+b+c=0(b)(a+b+c)^(3)=27abc(c)a+b+c=3abc(d)a^(3)+b^(3)+c^(3)=0

If a/b = b/c = c/d , then show that (a - b)^(3) : (b - c)^(3) = a : d .

If (a+b+2c+3d)(a-b-2c+3d)=(a-b+2c-3d)(a+b-2c-3d) , then 2b c is equal to 3/2 (b) (3a)/(2d) (c) 3a d (d) a^2d^2

If (a)/(b)=(b)/(c)=(c)/(d), then (b^(3)+c^(3)+d^(3))/(a^(3)+b^(3)+c^(3)) will be equal to (a)/(b) b.(b)/(c) c.(c)/(d) d.(d)/(a)

The minimum value of an expression (a+b+c+d)((3)/(b+c+d)+(3)/(c+d+a)+(3)/(d+a+b)+(3)/(a+b+c)) is,where a,b,c and d are positive numbers.

If a=log_(8)225backslash and backslash b=log_(2)15, then a in terms of b is a.(b)/(2) b.b c.(2b)/(3) d.(3b)/(2)

If a,b,c,d are in continued proportion,then (a^(3)+b^(3)+c^(3))/(b^(3)+c^(3)+d^(3))=(i)(a)/(b)(ii)(b)/(c)(iii)(c)/(d)(iv)(a)/(d)