Home
Class 10
MATHS
" (ii) "cos(B+C)/(2)=sin(A)/(2)...

" (ii) "cos(B+C)/(2)=sin(A)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are sides opposte to the angles A,B , C then which of the following is correct (1)(b+c)cos((A)/(2))=a sin((B+C)/(2))(2)(b+c)cos((B+C)/(2))=a sin((A)/(2))(3)(b-c)cos((B-C)/(2))=a(cos A)/(2)(4)(b-c)cos((A)/(2))=a sin((B-C)/(2))

In a ∆ABC prove that cos((A+B)/(2))=sin(C)/(2)

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

If A, B , C =pi, then prove that cos ^(2). (A)/(2)+ cos^(2). (C)/(2)- cos^(2). (C)/(2)=2(cos. (A)/(2) cos. (B)/(2)sin. (C)/(2))

In any triangle ABC, prove that following: (a-b)(cos C)/(2)c sin((A-B)/(2))

If A, B, C are interior angles of triangle ABC, prove that :- cos((B+C)/2)=sin(A/2) .

if A, B and C are interior angles of a triangle ABC, then show that cos((B+C)/2) = sin (A/2)

if A, B and C are interior angles of a triangle ABC, then show that cos((B+C)/2) = sin (A/2)

if A, B and C are interior angles of a triangle ABC, then show that cos((B+C)/2) = sin (A/2)

In triangleABC, (cos((B-C)/(2)))/(sin(A/2))=