Home
Class 12
MATHS
lim(x->0)(sin^3(sqrtx)log(1+3x))/((tan^-...

`lim_(x->0)(sin^3(sqrtx)log(1+3x))/((tan^-1 sqrtx)^2(e^(5sqrtx)-1)x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The velue of lim_(x->0)(sin(3sqrtx)ln(1+3x))/((tan^(- 1)sqrt(x))^2(e^(5(3sqrtx))-1)) is equal to

lim_(x->1)sqrt(x+8)/sqrtx

(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrt(x)+cos^(-1)sqrtx)

lim_(xto1)(sqrtx-1)/(x-1) is

y= log(sqrtx+1/sqrtx)

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is

The value of lim_(x rarr 0) ((tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1)) is

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is

lim_(xrarr0^(+)) (1)/(xsqrtx)(a tan^(-1).(sqrtx)/(a)-btan^(-1).(sqrtx)/(b)) has the value equal to