Home
Class 12
MATHS
Proving int0^(4/pi)3x^2sin(1/ x)-xcos(1/...

Proving `int_0^(4/pi)3x^2sin(1/ x)-xcos(1/ x)dx=(32sqrt2)/pi^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(4/pi) (3x^2sin(1/x)-xcos(1/x))dx= (A) (8sqrt(2))/pi^3 (B) (32sqrt(2))/pi^3 (C) (24sqrt(2))/pi^3 (D) sqrt(2048)/pi^3

int_0^(4/pi) (3x^2sin(1/x)-xcos(1/x))dx= (A) (8sqrt(2))/pi^3 (B) (32sqrt(2))/pi^3 (C) (24sqrt(2))/pi^3 (D) sqrt(2048)/pi^3

int_0^(4/pi) (3x^(2) sin (1/x) - x cos (1/x)dx =

int_(0)^(Proving)3x^(2)sin((1)/(x))-x cos((1)/(x))dx=(32sqrt(2))/(pi^(3))

int_0^(2pi)sin^(100)xcos^(99)x dx

int_(0)^(pi//2)sin^(4)xcos^(5)x dx=

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is:

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is: