Home
Class 12
MATHS
If SK be the perpendicular from the focu...

If SK be the perpendicular from the focus S on the tangent at any point P on the ellipse `x^2/a^2+y^2/b^2=1(a>b).` then locus of K is

Promotional Banner

Similar Questions

Explore conceptually related problems

If p is the length of the perpendicular from a focus upon the tangent at any point P of the the ellipse x^2/a^2+y^2/b^2=1 and r is the distance of P from the focus , then (2a)/r-(b^2)/(p^2) is equal to

If p is the length of the perpendicular from a focus upon the tangent at any point P of the the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and rs the distance of P from the foicus,then (2a)/(r)-(b^(2))/(p^(2)) is equal to

The product of the perpendiculars from the foci on any tangent to the ellipse x^(2)//a^(2)+y^(2)//b^(2)=1 is

Prove that the product of the perpendiculars from the foci upon any tangent to the ellipse x^2/a^2+y^2/b^2=1 is b^2

Prove that the product of the perpendiculars from the foci upon any tangent to the ellipse x^2/a^2+y^2/b^2=1 is b^2

The product of the perpendiculars from the foci on any tangent to the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 is

The locus of the foot of the perpendicular from the foci an any tangent to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The locus of the foot of the perpendicular from the foci an any tangent to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

If p is the length of the perpendicular from the focus S of the ellipse x^(2)/a^(2)+y^(2)/b^(2) = 1 to a tangent at a point P on the ellipse, then (2a)/(SP)-1=