Home
Class 12
CHEMISTRY
Moles of KHC(2)O(4) (potassium acid oxa...

Moles of `KHC_(2)O_(4)` (potassium acid oxalate) required to reduce 100ml of 0.02M `KMnO_(4)` in acidic medium (to `Mn^(2+)`) is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of determining the moles of potassium acid oxalate (KHC₂O₄) required to reduce 100 mL of 0.02 M KMnO₄ in acidic medium to Mn²⁺, we can follow these steps: ### Step 1: Calculate the number of moles of KMnO₄ First, we need to calculate the number of moles of KMnO₄ present in the solution. The formula to calculate moles is: \[ \text{Moles} = \text{Molarity} \times \text{Volume (in liters)} \] Given: - Molarity of KMnO₄ = 0.02 M - Volume of KMnO₄ = 100 mL = 0.1 L Calculating the moles: \[ \text{Moles of KMnO₄} = 0.02 \, \text{mol/L} \times 0.1 \, \text{L} = 0.002 \, \text{mol} \] ### Step 2: Determine the n-factor of KMnO₄ In acidic medium, KMnO₄ is reduced from Mn(VII) to Mn(II). The change in oxidation state is: \[ \text{Change in oxidation state} = 7 - 2 = 5 \] Thus, the n-factor for KMnO₄ is 5. ### Step 3: Calculate the equivalents of KMnO₄ The number of equivalents of KMnO₄ can be calculated using the formula: \[ \text{Equivalents} = \text{Moles} \times \text{n-factor} \] Calculating the equivalents: \[ \text{Equivalents of KMnO₄} = 0.002 \, \text{mol} \times 5 = 0.01 \, \text{equivalents} \] ### Step 4: Determine the n-factor of KHC₂O₄ Potassium acid oxalate (KHC₂O₄) is oxidized to CO₂. The oxidation state of carbon in KHC₂O₄ is +3, and it changes to +4 in CO₂. Therefore, the change in oxidation state is: \[ \text{Change in oxidation state} = 4 - 3 = 1 \] Since there are two carbon atoms in KHC₂O₄, the n-factor for KHC₂O₄ is: \[ \text{n-factor} = 2 \times 1 = 2 \] ### Step 5: Calculate the equivalents of KHC₂O₄ Let the number of moles of KHC₂O₄ be \( n \). The equivalents of KHC₂O₄ can be expressed as: \[ \text{Equivalents of KHC₂O₄} = n \times 2 \] ### Step 6: Set up the equivalence equation Since the equivalents of the reducing agent (KHC₂O₄) must equal the equivalents of the oxidizing agent (KMnO₄), we can set up the equation: \[ n \times 2 = 0.01 \] ### Step 7: Solve for n (moles of KHC₂O₄) Now, we can solve for \( n \): \[ n = \frac{0.01}{2} = 0.005 \, \text{mol} \] ### Final Answer The moles of KHC₂O₄ required to reduce 100 mL of 0.02 M KMnO₄ in acidic medium is **0.005 moles**. ---

To solve the problem of determining the moles of potassium acid oxalate (KHC₂O₄) required to reduce 100 mL of 0.02 M KMnO₄ in acidic medium to Mn²⁺, we can follow these steps: ### Step 1: Calculate the number of moles of KMnO₄ First, we need to calculate the number of moles of KMnO₄ present in the solution. The formula to calculate moles is: \[ \text{Moles} = \text{Molarity} \times \text{Volume (in liters)} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Mass of KHC_(2)O_(4) (potassium acid oxalate) required to reduce 100 ml of 0.02 M KMnO_(4) in acidic medium (to Mn^(2+) ) is x g and to neutralise 100 ml of 0.05 M Ca(OH)_(2) is y g , then

The weight of oxalic acid required to reduce 80 ml of 0.4 M KMnO_(4) in acidic medium is

How many moles of FeC_2O_4 are required to reduce 2 " mol of " KMnO_4 in acidic medium?

What volume of 0.1M H_(2)O_(2) solution will be required to completely reduce 1 litre of 0.1 M KMnO_(4) in acidic medium?

'a' g KHC_(2)O_(4) are required to reduce 100mL of 0.02M KMnO_(4) in acid medium and 'b' g KHC_(2)O_(4) neutralises 100mL of 0.05M Ca(OH)_(2) then :

If a g is the mass of NaHC_(2)C_(2)O_(4) required to neutralize 100mL of 0.2M NaOH and b g that required to reduce 100mL of 0.02mL KMnO_(4) in acidic medium then: