Home
Class 12
CHEMISTRY
The rate constant for the reaction in ga...

The rate constant for the reaction in gaseous phase
`O+O_(3) rarr 2O_(2)` is `8.0xx10^(-15)" cm"^(3)" molecule"^(-1) s^(-1)` at 298 K. Corresponding value in `dm^(3)" mol"^(-1) s^(-1)` is :

A

`4.8xx10^(6)" dm"^(3)" mol"^(-1)s^(-1)`

B

`1.33xx10^(-6)" dm"^(3)" mol"^(-1) s^(-1)`

C

`4.8xx10^(8)" dm"^(3)" mol"^(-1) s^(-1)`

D

`1.33xx10^(6)" dm"^(3)" mol"^(-1) s^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To convert the rate constant from \( \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1} \) to \( \text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \), we will follow these steps: ### Step 1: Understand the conversion factors 1. **Volume Conversion**: - \( 1 \text{ dm} = 10 \text{ cm} \) - Therefore, \( 1 \text{ dm}^3 = (10 \text{ cm})^3 = 1000 \text{ cm}^3 \) - This means \( 1 \text{ cm}^3 = 0.001 \text{ dm}^3 \) or \( 1 \text{ cm}^3 = 10^{-3} \text{ dm}^3 \). 2. **Molecule to Mole Conversion**: - We know that \( 1 \text{ mole} = 6.02 \times 10^{23} \text{ molecules} \). - Therefore, \( 1 \text{ molecule} = \frac{1}{6.02 \times 10^{23}} \text{ moles} \). ### Step 2: Write the given rate constant The given rate constant is: \[ k = 8.0 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \] ### Step 3: Convert the volume from cm³ to dm³ Using the conversion factor: \[ k = 8.0 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \times \left(10^{-3} \text{ dm}^3/\text{cm}^3\right) \] \[ k = 8.0 \times 10^{-15} \times 10^{-3} \text{ dm}^3 \text{ molecule}^{-1} \text{s}^{-1} \] \[ k = 8.0 \times 10^{-18} \text{ dm}^3 \text{ molecule}^{-1} \text{s}^{-1} \] ### Step 4: Convert molecules to moles Now, we convert from molecules to moles: \[ k = 8.0 \times 10^{-18} \text{ dm}^3 \text{ molecule}^{-1} \text{s}^{-1} \times \left(6.02 \times 10^{23} \text{ molecules/mole}\right) \] \[ k = 8.0 \times 10^{-18} \times 6.02 \times 10^{23} \text{ dm}^3 \text{ mol}^{-1} \text{s}^{-1} \] ### Step 5: Calculate the final value Calculating the above expression: \[ k = 8.0 \times 6.02 \times 10^{5} \text{ dm}^3 \text{ mol}^{-1} \text{s}^{-1} \] \[ k = 48.16 \times 10^{5} \text{ dm}^3 \text{ mol}^{-1} \text{s}^{-1} \] \[ k \approx 4.8 \times 10^{6} \text{ dm}^3 \text{ mol}^{-1} \text{s}^{-1} \] ### Final Answer Thus, the corresponding value of the rate constant in \( \text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \) is: \[ \boxed{4.8 \times 10^{6} \text{ dm}^3 \text{ mol}^{-1} \text{s}^{-1}} \]

To convert the rate constant from \( \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1} \) to \( \text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \), we will follow these steps: ### Step 1: Understand the conversion factors 1. **Volume Conversion**: - \( 1 \text{ dm} = 10 \text{ cm} \) - Therefore, \( 1 \text{ dm}^3 = (10 \text{ cm})^3 = 1000 \text{ cm}^3 \) - This means \( 1 \text{ cm}^3 = 0.001 \text{ dm}^3 \) or \( 1 \text{ cm}^3 = 10^{-3} \text{ dm}^3 \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The rate constant for two parallel reactions were found reactions were found to be 1.0 xx 10^(–2)" dm"^(3)" mol"^(-1) s^(–1) and 3.0 xx 10^(–2)" dm"^(3)" mol"^(–1) s^(–1) . If the corresponding energies of activation of the parallel reactions are 60.0" kJ mol"^(–1) and 70.0" kJ mol"^(–1) respectively, what is the apparent overall energy of activation ?

The rate constant for the reaction: 2N_(2)O_(5) rarr 4NO_(2)+O_(2) is 3.0xx10^(-5) sec^(-1) . If the rate is 2.40xx10^(-5) M sec^(-1) , then the concentration of N_(2)O_(5) (in M) is:

The gas phase reaction 2NO_(2)+O_(3)rarrN_(2)O_(5)+O_(2) has the rate constant k = 2.0xx10^(-4) dm^(3) mol^(-1) s^(-1) at 300 K. The order of the reaction is

The rate constant for the reaction, 2N_(2)O_(5) rarr 4NO_(2) + O_(2) is 3.0 xx 10^(-5) s^(-1) . If the rate is 2.40 xx 10^(-5) mol L^(-1) s^(-1) , then the initial concentration of N_(2)O_(5) (in mol L^(-1) ) is

The rate constant for the reaction 2N_(2)O_(5) rarr 4NO_(2)+O_(2) is 3.0 xx 10^(-5) s^(-1) . If the rate is 2.40 xx 10^(-5) mol L^(-1) s^(-1) , then the concentration of N_(2)O_(5) (in mol L^(-1) ) is

The rate constant for the reaction 2N_(2)O_(5)to4NO_(2)+O_(2), "is"" " 3.0xx10^(-5)S^(-1) . If the rate is 2.40xx10^(-5)"mol"L^(-1)s^(-1) then the concentration of N_(2)O_(5)("in mol" L^(-1)) is

If the rate constant of reaction k=2times10^(-6)s^(-1)atm^(-1) . Its value in dm^(3)mol^(-1)s^(-1) is

The rate constant for the reaction, 2N_2O_5 to 4NO_2 + O_2" is "4.0 xx 10^(-5)sec^(-1) . If the rate is 3.4 xx 10^(-5)mol.l^(-1)s^(-1) . Then the concentration of N_2O_5 (in mol litre^(-1) ) is :

The rate constant of the reaction, 2N_(2)O_(5) to 4NO_(2) + O_(2) at 300 K is 3 xx 10^(-5)s^(-1) . If the rate of the reaction at the same temperaturre is 2.4 xx 10^(-5) mol dm^(-3)s^(-1) , then the molar concentration of N_(2)O_(5) is