Home
Class 12
CHEMISTRY
Ag^(+) + NH(3) ltimplies [Ag(NH(3))]^(+)...

`Ag^(+) + NH_(3) ltimplies [Ag(NH_(3))]^(+), k_(1)=6.8 xx 10^(-5)`
`[Ag(NH_(3))]^(+) + NH_(3) ltimplies [Ag(NH_(3))_(2)]^(+)`,
`k_(2) = 1.6xx10^(-3)`
The formation constant of `[Ag(NH_(3))_(2)]^(+)` is :

A

`6.8xx10^(-6)`

B

`1.08xx10^(-5)`

C

`1.08xx10^(-6)`

D

`6.8xx10^(-5)`

Text Solution

Verified by Experts

The correct Answer is:
B

The required reaction is `Ag^(+) +2NH_(3) + [Ag (NH_(3))_(2)]^(+), K=` ?
From the given equations, we have
`k_(1)=([Ag(NH_(3))]^(+))/([Ag^(+)][NH_(3)]), k_(2) =([Ag (NH_(3))_(2)]^(+))/([Ag (NH_(3))]^(+)[NH_(3)])`
If equations are added, their rate constants are multiplied.
`therefore` The value of K is given by
`K=k_(1)xxk_(2) =6.8xx10^(-2)xx1.6xx10^(-3)=1.08xx10^(-5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Ag^(+)+hArr|Ag(NH_(3))_(2)|^(+), k_(1) = 6.8 xx 10^(-3) [Ag(NH_(3))]^(+) + NH_(3)hArr |Ag(NH_(3))_(2)|, k_(2) = 1.6xx10^(-3) Then the formation constant or |Ag(NH_(3))_(2)|^(+) is

If Ag^(+)+NH_(3)hArr[Ag(NH_(3))]^(+) , K_(1)=3.5xx10^(-3) and [Ag(NH_(3))]^(+)+NH_(3)hArr[Ag(NH_(3))_(2)]^(+) , K_(2)=1.74xx10^(-3) . The formation constant of [Ag(NH_(3))_(2)]^(+) is :

Ag^(+)+NHP(3)hArr[Ag(NH_(3))]^(+), K_(1)=3.5=10^(-3) [Ag(NH)_(3)]^(+)+NH_(3)hArr[Ag(NH_(3))_(2)]^(+),K_(2)=1.7xx10^(-3) then the formation constant of [Ag(NH_(3))_(2)]^(+) is

Zn^(+2) + 2NH_(3) hArr [Zn(NH_(3))_(2)]^(+2), K_(1) = 2xx10^(-3) [Zn(NH_(3))_(2)]^(+2) + 2NH_(3) hArr [Zn(NH_(3))_(4)]^(2+), K_(2) = 1.5xx10^(-3) Find out the instability constant?

{:(Ag^+ +NH_3 hArr[Ag(NH_3)]^+,,K_1=3.5xx10^-3),([Ag(NH_3)]^+ +NH_3 hArr[Ag(NH_3)_2]^+,,K_2=1.8xx10^-3):} then, the overall formation constant of [Ag(NH_3)_2]^+ is :

The hybridisation of Ag in [Ag(NH_3)_2]^+ complex is -

The hybridisation of Ag in [Ag(NH_3)_2]^(+) complex is